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more than 98 % of the inherent capacity.

From the equations cited in Schneider 4, a general
expression can be formed which describes the symbol
error rate performance of noncoherent CFSK in
AWGN:

( NOTE: For M _>3, this expression is valid only as an
asymptotic form for large R. )

Pe(M) =M _, (-1)r (D} Q2((x,_,r)exp[-R(1-1)]
Dr=2

where D=N-M+I,
No No

k = log2[N|/_ bits per symbol
_ /M

1 + r Q(_.,13)- Q(13,(_) for M = 2 /

r+l
Q2((z,p,r) = 1

t1 otherwise

 2Rr 13= r+l ' r

Q ((_,13) = Marcum's Q function

Marcum's Q function is an integral which describes the
cumulative density function ( CDF ) of a Rician variable,
as it pertains to the envelope of a sinusoid plus
narrowband AWGN 6. No closed form solution exists

for this integral; however, a simple recursive procedure
for evaluating it is given by Parl I .

The probability Pb of committing one or more bit errors

is related to Pe by Pb = 1 - ( 1 - Pe ) 1/k. Evaluating Pb
for N=9 and 1_<M _<8 yields the bit error rate ( BER )
performance curves shown in Figure 1. As is evident
with other higher-order modulation schemes,
increasing signal dimensionality implies an associated
increase in Eb/No to maintain a fixed BER. Note that
dividing the available transmit energy equally over a
large number of tones ( M - N ) results in substantially
degraded power and spectral efficiency.

The spectral efficiency of CFSK is given by:

FI = ( bits per symbol ). ( symbols per second )
W bandwidth in Hertz

'og2( N )k-(1/Tsymbol)_ k _ M

( N / Tsymbol ) N N

The highest possible R/W value for a given N is
obtained when M = Int ( N/2 ). The following table
demonstrates that N and M must grow rapidly to
support CFSK spectral efficiencies above 0.85 bits /
sec / Hz. Since modulator and demodulator complexity
are tied to N and M, this value is also a rough limit on
practically attainable R/W for CFSK

Desired Actual
RIW N M R/W

_. . .._.... _

..........0.5oo0. .....2 ..... ! ............0,5oo0
0.5500i 4 2 0.6462

............0..600_0 i 4 2 0.6462
0.6500 5 2 0.6644

..........0.z000L .......6...........3...........0-7703
0.7500i 8 4: 0.7662

0.8000 11 ......5i 0.8047
0.8500 16 8 0.8532
0.9000 28 14 0.9021
0.9500 68 34 0.9504

Figure 2 depicts the spectral efficiency of CFSK as a
function of Eb/No and N for several fixed values of M.
Interestingly, the peak R/W values are all attained at an
Eb/No _ 11.2 dB, essentially independent of M. The
ability to trade off spectral efficiency, power efficiency
and modem hardware complexity through the choice of
N and M values is an important property of CFSK.

EXAMPLE: Compare the following CFSK schemes
( both are required to operate with a 1.0E-5 BER ) •

5 _ =10 k 3.3 R__ 0.664 Eb dB13.1
3 / W NO

( 10 )=120 k=6.9 R---=0.691 El0 =10.1dB3 W No

Doubling N has more than doubled k AND provided a 3
dB Eb/No reduction, without sacrificing BER
performance and actually increasing R/W slightly. The
second CFSK format is clearly favorable for a high data
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rate system, provided the bandwidth utilization and
modest hardware complexity increases are acceptable.

Sklar 8 compares the bandwidth and power efficiencies
of noncoherent single-tone N-ary FSK, coherent N-ary
PSK and coherent N-ary QAM modulation. Traditional
N-ary FSK spectral efficiency rapidly drops below 0.5
for N>4, whereas coherent PSK and QAM provide high
R/W at the expense of higher Eb/No. As the following
table shows, CFSK provides useful R/W improvement
over traditional FSK, operates with comparable Eb/No
values, and does not require coherent processing to
obtain it.

Noncoherent FSK
Noncoherent CFSK
Coherent _<64 PSK *

Coherent _<256 QAM *

R/W Eb/No in dB

<0.5 6 to 12
< 0.85 8 to 1 5
1 to 6 9 to 27
4 to 8 1 5 to 3 0

* assuming ideal Nyquist filtering

Modulator Implementation

A CFSK modulator design concept is shown in Figure
3. Input source data is processed by a SYMBOL MAP
function to yield binary codes at the transmit symbol
rate. Each code points to a block of SAMPLE
MEMORY locations containing quantized sample
values for the chosen symbol. The least significant
sample memory address bits are created by a
COUNTER reset to zero at the symbol rate and
incremented at the sample rate. The D/A converter
( DAC ) creates an analog CFSK symbol stream
waveform based on the sequence of retrieved sample
values. Spectral aliases at the DAC output are
removed by an ANTI-ALIAS Iowpass FILTER.

Digital processing in the CFSK modulator is very similar
to that found in a numerically controlled oscillator
( NCO ) or direct digital synthesizer ( DDS ). Thorough
discussions of DDS theory and applications can be
found in 10-11 Very large scale integrated ( VLSI )
circuit based DDS devices are currently available with
sample rates up to 1 Gsample/sec; some devices
include digital modulation capabilities.

The modulator output IF frequency can be flexibly
selected within the constraint of a given sample rate.
Sample memory content can be readily altered to
generate the signalling tones at different frequencies.
This property could be used for transmitter center
frequency tuning in a frequency division multiple

access ( FDMA ) network of users employing CFSK
modulation.

Attempting to create tones with rapidly changing
frequencies ( e.g. for spread spectrum frequency hop
systems ) by using phase-locked loop ( PLL )
synthesizers or hybrid PLL / DDS schemes can yield
large amounts of undesired spurious signal content.
The specific mechanisms which give rise to this and the
extent to which they degrade FSK communication
system performance are reported by Alexovich and
Gagliardi 12. By using a sample rate equal to an integer
multiple of the symbol rate, the DDS-like modulator can
perform phase continuous symbol-to-symbol
switching. Modulator output signal quality depends
mainly on spectral purity of the DAC and an appropriate
upconversion frequency plan devoid of mixer spurious
product responses.

Amplifying a CFSK signal resident at microwave
frequencies wilh a traveling-wave tube amplifier
( TW3A ) will create undesirable distortion products
unless some degree of backoff is used.
Precompensation of the modulator symbol samples
may improve this situation somewhat. If possible, the
use of a solid-state power amplifier ( SSPA ) may also
be beneficial. A third possibility would be to construct
several parallel DAC / RF upconverter / amplifier paths,
each being utilized to process a subset of the M tones
in any given CFSK symbol. The DDS-like digital
processing could easily be extended to support a
parallel path structure; the main concern is the
attendant analog / RF hardware growth, particularly for
large values of M.

Demodulator Implementation

A CFSK demodulator design concept is shown in
Figure 4. Tracing the main signal processing path, the
input CFSK analog signal ( assumed to be imposed on
an IF carrier ) is downconverted to baseband by a mixer
and a local oscillator ( LO ). The LO signal is formed by
a DDS, a DAC, and an ANTI-ALIAS Iowpass FILTER.
The Iowpass portion of the mixer output is then
quantized by an A/D converter ( ADC ) to create signal
samples. The samples are analyzed by a real-time
Discrete Fourier Transform ( DFT ) processor to extract
spectral content from each of the N signalling tone
spectral regions in parallel. Signal strength in each DFT
bin is then measured by a bank of DETECTORS,
whose outputs are used to COMPUTE TEST
STATISTICS. Finally, the M LARGEST statistic
VALUES are identified, and a MAP function is used to
translate the associated DFT bin numbers INTO
recovered SYMBOL DATA.
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Closed-loop SYMBOL SYNChronization can be
achieved by advancing or retarding the sample clock in
accordance with a maximum-likelihood ( ML ) symbol
time displacement estimate. These symbols can also
be used in the FREQUENCY ACQUISITION process,
which combines LO stepping with examinations of the
detected DFT bin outputs for proper content
( averaged over several symbol times to remove noise
effects in a low SNR environment ). Once frequency
acquisition occurs, TRACKING information is easily
obtained from an ML estimator whose inputs are the
detected DFT bins adjacent to the outer spectral edge
tones of the CFSK signal. Similar strategies and
accompanying performance analyses for traditional
noncoherent single-tone N-ary FSK signalling are
presented in Chadwick and Springett 13.

The conventional view of noncoherent FSK receiver
structure espouses the use of square-law energy
detection. In signalling schemes such as CFSK,
however ( where the number of equiprobable equal-
energy symbols is much larger than the number of
signalling tones used ), VonDerEmbse et.al. TM show
that linear-law amplitude detectors are highly superior
in performance.

Pipelined DFT realization with dedicated hardware is
the DSP implementation of choice for a high-speed
CFSK demodulator. Small transform size ( N < 64 )
high-speed DFTs are commonplace in radar signal
processors; VLSI devices for such applications have
recently become available 15"16.

Practical DFT processors can also be implemented with
acousto-optic ( AO ) Bragg cells, charge-coupled
devices ( CCD's ) and surface acoustic wave ( SAW )
devices. Each of these is being considered for
potential use in satellite on-board FDMA block
demultiplexing 5. CFSK demodulation with any of
these alternative signal channelizer technologies may
also be attractive, particularly if N is large.

Sianal Simulation

A memory pattern comprised of time and amplitude
quantized CFSK { N=4, M=2 } signal samples was
reconstructed as an analog waveform by a commercial
arbitrary waveform synthesizer ( AWS ) unit. One
psuedo-random walk through each of the 6 unique
symbol time waveforms is shown at the top of Figure 5.

Continuously repeating this symbol sequence results
in the spectral content shown at the bottom of Figure
5. According to the general noncoherent FSK theory,
adjacent signalling tones must be separated spectrally
by at least the reciprocal of the symbol time 9. A value
twice as large was used here to allow clear observation

of the modulation content impressed on the tone
frequencies. Note the well-confined spectral
occupancy; this is a direct consequence of the type of
signalling being performed, not the result of an
explicitly imposed filtering operation.

Svstem-Level Issues

Size, weight, power and thermal management
constraints imply that a spacecraft resident CFSK
modem would have to be constructed with a high
degree of monolithic integration. All of the digital
processing functions shaded in Figures 3 and 4 are
totally amenable to VLSl realization, perhaps as a single
device. High-speed commercial ADC and DAC's are
currently available in hybrid packages. The simple
remaining circuitry could easily be incorporated into a
single hybrid package. Thus, space qualified CFSK
modulator and demodulator designs appear to be
achievable with current technology.

FSK signalling may be contemplated for use in an
environment where time-varying channel conditions
must be adaptively responded to. In such cases,
Hingorani and Chesler 17 suggest measuring the
statistics of the quantities which form the decision
variable, and processing them in a ML-like sense to
yield a reliable estimate of the bit error rate. This
approach provides on-line performance monitoring
without test pattern transmissions. Extending this
technique to work with CFSK signals may be useful.

Areas for Further Study

Three main issues associated with the use of CFSK
modulation appear to warrant simulation studies.
Combining CFSK with error corrective coding ( ECC )
would further enhance efficient use of available
spacecraft power for a given data capacity and BER.
The acquisition and tracking algorithms proposed for
single-tone FSK communications 13 should be
validated for CFSK use. Assessing the BER
degradation effects of CFSK signal amplification by a
TWTA and the potential of utilizing precompensation
techniques would be a beneficial effort.

Conclusion

The CFSK modulation scheme presented in this paper
has been shown to be viable for use in modern high
data rate digital communications systems, including
those which employ satellites. This viability is due in
large part to the advances in signal processing
technology achieved over the past quarter century.
The large variety of potential CFSK schemes gives the
system engineer considerable latitude in selecting a
desired balance of power efficiency, spectral efficiency
and modem hardware complexity.
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